본문 바로가기
반응형

-291

RAPTOR: RECURSIVE ABSTRACTIVE PROCESSINGFOR TREE-ORGANIZED RETRIEVAL ABSTRACT스탠포드 대학교의 연구팀이 개발한 RAPTOR 모델은 언어 모델이 정보를 더 잘 검색하고 이해할 수 있도록 돕기 위한 새로운 접근 방식입니다. 연구 목적일반적으로, 검색을 보강한 언어 모델은 세상에서 일어나는 변화를 더 잘 반영하고, 드문 지식을 통합하는 데 도움이 됩니다. 하지만, 대부분의 기존 방법들은 검색할 때 문서의 짧고 연속된 부분만을 가져오므로 문서 전체의 맥락을 이해하는 데 한계가 있습니다. RAPTOR 모델의 주요 아이디어 1. 재귀적 임베딩, 클러스터링, 요약 • 문서의 작은 부분(청크)을 재귀적으로 임베딩하고, 클러스터링하며, 요약합니다. • 이렇게 하면 문서의 요약 수준이 다른 여러 단계로 구성된 트리를 만들 수 있습니다. 2. 트리 구조를 활용한 검색 • 추론 시, R.. 2024. 5. 26.
Generative Representational Instruction Tuning Abstract자연어 처리에서 생성(generation)과 임베딩(embedding) 작업을 모두 다룰 수 있는 새로운 방법인 GRIT(Generative Representational Instruction Tuning)에 대해 설명하고 있습니다.기존의 언어 모델들은 주로 생성이나 임베딩 중 한 가지 작업에서만 좋은 성능을 보였습니다. 하지만 GRIT은 명령어(instruction)를 통해 생성과 임베딩 작업을 구분함으로써, 하나의 대형 언어 모델로 두 가지 작업을 모두 처리할 수 있게 합니다.GRIT을 적용한 GRITLM 7B 모델은 MTEB(Massive Text Embedding Benchmark)에서 새로운 최고 성능을 달성했고, 다양한 생성 작업에서도 같은 크기의 다른 모델들을 능가했습니다. 더.. 2024. 5. 19.
읽으면 AI에 대해 가장 빠르게 똑똑해지는 글 27개 OpenAI의 공동 창립자인 일리아 수츠케버가, 둠의 창시자이자 프로그래밍의 전설인 존 카맥에게 AI에 대해 매우 빨리 똑똑해지고 싶으면 읽으라고 말한 27개의 글을 가져왔습니다. (출처: Matt Wolfe)하나 하나 열어보며 세 줄 요약을 진행했습니다. LLM쪽은 따로 정리해서 진행해야겠지만, 전반적으로 파악하지 매우 좋은 퀄리티들의 글이니 하나하나 집중해서 읽어봐야겠습니다. :) 1. The Annotated TransformerStanford 대학교의 CS231n 강의에 대한 코스 웹사이트. CNN에 대한 기본 및 심화 학습 가능세줄요약이미지 분류, 선형 분류, 최적화, 역전파, 신경망 아키텍처 등 신경망의 기본 개념 학습합성곱 신경망의 구조, 시각화, 전이학습 등 CNN의 심화 내용 다룸3개의 .. 2024. 5. 12.
[PPO] Proximal Policy Optimization Algorithms Abstract프록시말 정책 최적화(Proximal Policy Optimization, PPO)는 강화학습을 위한 새로운 정책 경사 방법입니다. 이 방법은 환경과의 상호작용을 통해 데이터를 샘플링하고, 확률적 경사 상승법을 사용하여 "대리" 목적 함수를 최적화하는 과정을 번갈아 수행합니다.기존의 정책 경사 방법은 데이터 샘플 하나당 한 번의 경사 업데이트를 수행하는 반면, PPO는 미니배치 업데이트를 여러 번 수행할 수 있는 새로운 목적 함수를 제안합니다. 이는 트러스트 영역 정책 최적화(Trust Region Policy Optimization, TRPO)의 장점을 가지면서도, 구현이 훨씬 간단하고 더 일반적이며, 실험적으로 더 나은 샘플 복잡도를 보입니다.PPO는 시뮬레이션 로봇 이동과 아타리 게임.. 2024. 5. 5.
반응형