본문 바로가기
반응형

ML & DL/논문리뷰32

Native Sparse Attention: Hardware-Aligned and NativelyTrainable Sparse Attention 원문: https://arxiv.org/pdf/2502.11089  Introduction - 긴 문맥 모델링의 중요성최근 연구에서는 긴 문맥(long-context) 처리 능력이 차세대 대형 언어 모델(LLM)에서 매우 중요한 요소로 떠오르고 있음• 복잡한 문제 해결과 심층 추론 (예: DeepSeek-AI, 2025) • 긴 코드베이스를 한 번에 처리하는 코드 생성 (예: Zhang et al., 2023) • 수많은 대화를 주고받는 AI 에이전트 시스템 (예: Park et al., 2023)최근 등장한 OpenAI o-series, DeepSeek-R1, Gemini 1.5 Pro 같은 모델들은 ✅ 긴 문서나 코드베이스를 한 번에 처리하고 ✅ 수천 개의 단어가 포함된 대화를 이해하며 ✅ 문맥을 유.. 2025. 3. 23.
Slim attention: cut your context memory in half withoutloss of accuracy — K-cache is all you need for MHA 원문: https://arxiv.org/pdf/2503.05840 이 논문에서는 Transformer 모델의 Slim attention이라는 새로운 attention 메커니즘을 제안한다. Slim attention은 Multi-Head Attention (MHA)에서 context memory 크기를 절반으로 줄여 inference 속도를 향상시킨다. 핵심 아이디어는 value (V) projection을 key (K) projection으로부터 계산하여 KV-cache 크기를 줄이는 것이다. 이 방법은 수학적으로 동일하므로 모델 정확도를 손상시키지 않으며, 특히 긴 context를 처리하는 데 효율적이다. 또한, Slim attention은 encoder-decoder 구조에서 context memor.. 2025. 3. 16.
MLGym: A New Framework and Benchmarkfor Advancing AI Research Agents 원문: https://arxiv.org/pdf/2502.14499 이 논문에서는 MLGym와 MLGym-Bench라는 새로운 프레임워크를 소개하며 인공지능 에이전트의 성능을 평가하고 발전시키기 위한 기준을 제공합니다. MLGym-bench는 컴퓨터 비전, 자연어 처리, 강화 학습, 게임 이론 등 다양한 분야에서 13개의 다채롭고 개방형인 AI 연구 과제로 구성됩니다. 이러한 과제들을 해결하기 위해서는 새로운 아이디어와 가설의 생성, 데이터 생성 및 처리, ML 기법 구현, 모델 학습, 실험 수행, 결과 분석, 그리고 반복적인 개선과정 등 실제 AI 연구에서 요구되는 다양한 역량이 필요합니다.논문에서는 Claude-3.5-Sonnet, Llama-3.1 405B, GPT-4o, o1-preview, Gem.. 2025. 2. 23.
Text2SQL is Not Enough: Unifying AI and Databases with TAG 원문: https://arxiv.org/pdf/2408.14717 1. 자연어 질의 처리의 한계와 새로운 접근 필요성기존의 Text2SQL과 RAG 방법은 사용자의 복잡한 자연어 질문을 처리하는 데 한계가 있다. 실제 사용자들은 도메인 지식, 세계 지식, 정확한 계산, 의미적 추론이 결합된 복잡한 질문을 하는 경향이 있다. 언어 모델(LM)은 텍스트 데이터에 대한 의미적 추론 능력을 제공하여 감성 분석이나 트렌드 요약과 같은 복잡한 작업을 수행할 수 있다. LM은 모델 학습 중 획득한 암묵적 세계 지식을 활용하여 데이터베이스 스키마에 명시적으로 포함되지 않은 정보를 보완할 수 있다. 데이터베이스와 LM의 장점을 효과적으로 결합한 새로운 시스템이 필요하며, 이는 사용자가 데이터를 이해하는 방식을 혁신할 잠.. 2025. 2. 9.
반응형